数据采集

数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。数据采集技术广泛应用在各个领域。比如摄像头,麦克风,都是数据采集工具。

被采集数据是已被转换为电讯号的各种物理量,如温度、水位、风速、压力等,可以是模拟量,也可以是数字量。采集一般是采样方式,即隔一定时间(称采样周期)对同一点数据重复采集。采集的数据大多是瞬时值,也可是某段时间内的一个特征值。准确的数据测量是数据采集的基础。数据量测方法有接触式和非接触式,检测元件多种多样。不论哪种方法和元件,均以不影响被测对象状态和测量环 境为前提,以保证数据的正确性。数据采集含义很广,包括对面状连续物理量的采集。在计算机辅助制图、测图、设计中,对图形或图像数字化过程也可称为数据采集,此时被采集的是几何量(或包括物理量,如灰度)数据。

在互联网行业快速发展的今天,数据采集已经被广泛应用于互联网及分布式领域,数据采集领域已经发生了重要的变化。首先,分布式控制应用场合中的智能数据采集系统在国内外已经取得了长足的发展。其次,总线兼容型数据采集插件的数量不断增大,与个人计算机兼容的数据采集系统的数量也在增加。国内外各种数据采集机先后问世,将数据采集带入了一个全新的时代。

生产数据

智能制造离不开车间生产数据的支撑。在制造过程中,数控机床不仅是生产工具和设备,更是车间信息网络的节点,通过机床数据的自动化采集、统计、分析和反馈,将结果用于改善制造过程,将大大提高制造过程的柔性和加工过程的集成性,从而提升产品生产过程的质量和效率。盖勒普MDC系统帮助企业解决了这一难题。

生产数据及设备状态信息采集分析管理系统MDCManufacturing Data Collection & Status Management)主要用于采集数控机床和其他生产设备的工作和运行状态数据,实现对设备的监视与控制,并对采集的数据进行分析处理,也可为MESERP等其他软件提供数据支持。MDC系统是机床数据采集系统和机床数据分析处理系统的集成,是具有数据采集,机床监控,数据分析处理,报表输出等功能的车间应用管理和决策支援系统。

MDC通过与数控系统、PLC系统、以及机床电控部分的智能化集成,实现对机床数据采集部分的自动化执行,不需要操作人员的手动输入,这样保障了数据的实时性和准确性。在采集数据的挖掘方面,MDC为企业提供了更为专业化的分析和处理,个性化的数据处理和丰富的图形报表展示,对机床和生产相关的关键数据进行统计和分析,如开机率、主轴运转率、主轴负载率、NC运行率、故障率、设备综合利用率(OEE)、设备生产率、零部件合格率、质量百分比等。精确的数据及时传递并分散到相关流程部门处理,实时引导、响应和报告车间的生产动态,极大提升了解决问题的能力,推进了企业车间智能制造的进程。

目的

1.png

数据采集,是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。

数据采集的目的是为了测量电压、电流、温度、压力或声音等物理现象。基于PC的数据采集,通过模块化硬件、应用软件和计算机的结合,进行测量。尽管数据采集系统根据不同的应用需求有不同的定义,但各个系统采集、分析和显示信息的目的却都相同。数据采集系统整合了信号、传感器、激励器、信号调理、数据采集设备和应用软件。

原理

1.png1.png

在计算机广泛应用的今天,数据采集的重要性是十分显著的。它是计算机与外部物理世界连接的桥梁。各种类型信号采集的难易程度差别很大。实际采集时,噪声也可能带来一些麻烦。数据采集时,有一些基本原理要注意,还有更多的实际的问题要解决。

假设对一个模拟信号x(t)每隔Δt时间采样一次。时间间隔Δt被称为采样间隔或者采样周期。它的倒数1/Δt被称为采样频率,单位是采样数/每秒。t=0,Δt,2Δt,3Δt……等等,x(t)的数值就被称为采样值。所有x(0),xΔt),x2Δt)都是采样值。根据采样定理,最低采样频率必须是信号频率的两倍。反过来说,如果给定了采样频率,那么能够正确显示信号而不发生畸变的最大频率叫做奈奎斯特频率,它是采样频率的一半。如果信号中包含频率高于奈奎斯特频率的成分,信号将在直流和奈奎斯特频率之间畸变。

采样率过低的结果是还原的信号的频率看上去与原始信号不同。这种信号畸变叫做混叠(alias)。出现的混频偏差(aliasfrequency)是输入信号的频率和最靠近的采样率整数倍的差的绝对值。

采样的结果将会是低于奈奎斯特频率(fs/2=50Hz)的信号可以被正确采样。而频率高于50HZ的信号成分采样时会发生畸变。分别产生了304010Hz的畸变频率F2F3F4。计算混频偏差的公式是:

混频偏差=ABS(采样频率的整数倍-输入频率)

其中ABS表示“绝对值”,

为了避免这种情况的发生,通常在信号被采集(A/D)之前,经过一个低通滤波器,将信号中高于奈奎斯特频率的信号成分滤去。这个滤波器称为抗混叠滤波器。

采样频率应当怎样设置。也许可能会首先考虑用采集卡支持的最大频率。但是,较长时间使用很高的采样率可能会导致没有足够的内存或者硬盘存储数据太慢。理论上设置采样频率为被采集信号最高频率成分的2倍就够了,实际上工程中选用510倍,有时为了较好地还原波形,甚至更高一些。

通常,信号采集后都要去做适当的信号处理,例如FFT等。这里对样本数又有一个要求,一般不能只提供一个信号周期的数据样本,希望有510个周期,甚至更多的样本。并且希望所提供的样本总数是整周期个数的。这里又发生一个困难,并不知道,或不确切知道被采信号的频率,因此不但采样率不一定是信号频率的整倍数,也不能保证提供整周期数的样本。所有的仅仅是一个时间序列的离散的函数x(n)和采样频率。这是测量与分析的唯一依据。数据采集卡,数据采集模块,数据采集仪表等,都是数据采集工具。

现场采集

对于大部分制造业企业,测量仪器的自动数据采集一直是个令人烦恼的事情,即使仪器已经具有RS232/485等接口,但仍然在使用一边测量,一边手工记录到纸张,最后再输入到PC中处理的方式,不但工作繁重,同时也无法保证数据的准确性,常常管理人员得到的数据已经是滞后了一两天的数据;而对于现场的不良产品信息及相关的产量数据,如何实现高效率、简洁、实时的数据采集更是一大难题。

采集功能

·实时采集来自生产线的产量数据或是不良品的数量、或是生产线的故障类型(如停线、缺料、品质),并传输到数据库系统中;

·接收来自数据库的信息:如生产计划信息、物料信息等;

·传输检查工位的不良品名称及数量信息;

·连接检测仪器,实现检测仪器数字化,数据采集仪自动从测量仪器中获取测量数据,进行记录,分析计算,形成相应的各类图形,对测量结果进行自动判断,如在机械加工零部件的跳动测量,拉力计拉力曲线的绘制等;

采集特点

·配备RS232RS485串口,可连接多个检测仪器实现自动数据采集;

·配备USB接口,方便数据的输出;

·配备RJ45接口,可通过网线接入网络;

·配备VGA视频输出及音频输出接口;

·内置WIFI模块,可通过无线方式接入,方便现场组网;

·最大支持32G数据存储空间;

·配备4.3英寸触摸屏,方便操作;

·用户可在网络中的任一PC通过接口获取数据,方便进行二次开发;

·可移动测量,即时传输数据,也可测试完成后,通过网络上传数据;

·电源连续工作时间6小时,待机时间长达10天;生产现场数据采集在品质过程中的非常重要的一个环节,好的数据采集方案可把品质管理人员从处理数据的繁重工作中解放出来,有更多的时间去解决实际的品质问题,同时即时的数据采集也使系统真正地实现实时监控,尽早发现问题,避免更大的损失。